Academic Programs

Master of Science in Mathematics

Print

General Info

Brief Description of the Major Field

The M.Sc. Mathematics program is designed to give students sufficient academic preparation for careers that require mathematical expertise in the academe, industry and government. It also serves as a preparatory course for a PhD degree in pure or applied mathematics and related fields, and provides the important foundation and training needed for research and teaching in mathematics.


Prospective Students

Prospective students of the program must have finished a baccalaureate degree in pure or applied mathematics or any related field. They must possess sufficient knowledge of the foundational concepts in undergraduate mathematics such as logic, set theory, advanced calculus, and abstract algebra.

 

Opportunities

As mathematics is a central resource for almost all disciplines of study, including but not limited to, education, operations research, actuarial science, biology, chemistry, statistics, physics and engineering, finance and economics, computer science and information theory, graduates of the M.Sc. Mathematics program, who achieve a higher level of mathematical maturity, are expected to perform better and establish successful careers in research, teaching and in various professions.


Requirements and Mechanics to Graduate

The program requires 31 units of course work including a graduate seminar course and the conduct and presentation of a research thesis. The thesis must be of publishable quality and will be subjected to external review. The required units are broken down as follows: 15 units core courses (mathematics or related courses, must have representative courses in algebra, analysis and geometry), 9 units cognate courses, 1 unit graduate seminar, and 6 units thesis. Students must also pass a written and/or oral general examination in both major and minor fields. This comprehensive examination is based on all courses prescribed for the student. It aims to test the student’s competence in integrating knowledge in the major and minor fields.


Courses

Courses

Course No.

Units

Course Title.

Course Description

Classification

Pre-requisite/s

Sem Offered

AMAT 266

3

Deterministic Mathematical Decision Models

Linear models; inventory models; integer programming and combinatorial models; elementary dynamic programming models; introduction to nonlinear programming. 3 hrs (class).

Specialization course

AMAT 160 or COI

1st Semester

AMAT 267

3

Probabilistic Mathematical Decision Models

Basic concepts and application of probabilistic mathematical decision models such as queuing, inventory, dynamic programming and simulation models. 3 hrs (class).

Specialization course

AMAT 160 or COI.

2nd Semester

MATH 211

3

Abstract Algebra

Binary operations, algebraic systems such as semi-groups, rings, integral domains, field extensions. 3 hrs (class).

Core course

MATH 111

1st Semester

MATH 213

3

Theory of Matrices

Operations on matrices; canonical forms, determinants; characteristic equations; eigenvalues. 3 hrs (class).

 

Core course

MATH 120

1st Semester

MATH 222

3

Finite Geometries

The finite plane, projective plane, affine plane, hyperbolic plane; Galois geometries; combinatorial applications of finite geometries; finite inverse geometry and block design. 3 hrs (class).

 

 

Core course

MATH 211

2nd Semester

MATH 225

3

Topology

Topological spaces; bases and subbases; continuity; metric spaces; separation axioms; compactness; product spaces; connectedness. 3 hrs (class).

Core course

MATH 101 or its equivalent

2nd Semester

MATH 230

3

Real Analysis

The real number system; Lebesque measures; Riemann and Lebesgue integrals; differentiation and integration. 3 hrs(class).

Core course

MATH 155

1st Semester

MATH 231

3

Functions of a Complex Variable

Complex differentiation and integration; analytic continuation; residue theorem; conformal mapping; and some special functions. 3 hrs (class).

Core course

MATH 155

2nd Semester

MATH 291

1-3

Special Topics

May be taken twice provided that total number of units to be credited to the student’s program will not exceed 4 units.

 

 

Specialization course

COI

 

MATH 299

1

Graduate Seminar

May be taken twice.

Graduate Seminar

COI

2nd Semester

MATH 300

6

Master’s Thesis

 

Master’s Thesis

 

1st Semester, 2nd Semester, Summer



Faculty Info

Faculty Information

Name

Highest Educational Attainment

Faculty

Rank

Specialization (Based on Program specialization)

Prof. Rolando G. Panopio

M.Sc.

Professor

Operations research, graph theory, mathematics education

Dr. Rolando E. Ramos

Ph.D.

Assoc. Prof.

Graph theory

Dr. Jean O. Loyola

Ph.D.

Assoc. Prof.

Semi-group theory, graph theory

Dr. Virgilio P. Sison

Ph.D.

Assoc. Prof.

Coding theory (convolutional codes and codes over rings)

Prof. Alleli C. Domingo

M.Sc.

Assoc. Prof.

Operations research, mathematics education

Prof. Lynie B. Dimasuay

M.Sc.

Assoc. Prof.

Mathematics education

Dr. Ma. Cristeta N. Cuaresma

Ph.D.

Asst. Prof.

Algebraic combinatorics

Prof. Genaro A. Cuaresma

M.Sc.

Asst. Prof.

Operations research

Dr. Editha C. Jose

Ph.D.

Asst. Prof.

Functional analysis, differential equations


Contact Info

Contact Information

Key Person to contact: The Director, Institute of Mathematical Sciences and Physics, U.P. Los Baños

Contact numbers: Telefax (049) 536-6610

Email Address: This email address is being protected from spambots. You need JavaScript enabled to view it.




Powered by Joomla! and etoro review
University of the Philippines Los Baños Graduate School
College Los Baños, Laguna 4031 Philippines
Copyright 2012 University of the Philippines Los Baños Graduate School. All Rights Reserved.
Wednesday the 20th.